
Evidently a monoclinic system material is determined by 12 independent parameters: dz, d2, .... 
de, c2z, c3z, c4z, c32, c42, and c43 with condition (1.5) being satisfied. If the moduli E 2, E 3, 
and E 4 = 2~23 are taken as the independent parameters instead of d2, d3, and d4, then by 
using (1.5) and the technical notation (1.8), we obtain condition (2.9) and 

E, (2.1o) + 
2 t ~31 (vJE~ -- v31~2~/E~)2 

E3 G ~/E2 -- ~1/E1 

For triclinic system materials, the matrices aij and Aij have the general form and 
therefore the formulas (1.3)-(1.7), (1.10)-(1.15) ~or the general anisotropic case must be 
used. The conditions d s > 0, d e > 0 can be rewritten similarly to (2.9) and (2.10) by using 
the technical notation (1.8), but due to the unwieldiness of these formulas, they will 
not be written out here. 
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ENERGY VERSION OF CREEP AND STRESS-RUPTURE STRENGTH THEORY FOR ANISOTROPIC 

AND ISOTROPIC MATERIALS WHICH DIFFER IN RESISTANCE TO TENSION 

AND COMPRESSION 

Kh. I. Al'tenbakh and A. A. Zolochevskii UDC 539.3 

A new separate branch in solid mechanics has recently been formed, i.e., creep theory 
for materials which resist tension and compression differently [i-15]. Intense development 
of it is connected with considerable engineering applications since light alloys, gray cast 
irons, polymers, ceramics, composites, and other materials whose creep depends on the type of 
loading are used extensively in various fields of technology. On the other hand, in published 
works [16-26] considerable attention is devoted to the mechanics of damaged materials. The 
majority of the approaches in this field are development and generalization of the Rabotnov 
concept [27] about a material damage parameter. It is evident that deformation and damage 
accumulation occur under creep conditions in parallel with each other and they have a reci- 
procal effect. In order to describe these phenomena it is very convenient to use equations 
of state in an energy form which make it possible to compare creep analysis with finding the 
time for failure of a structure. Here in the equations it is necessary to reflect the effect 
of the form of loading on creep and stress-rupture strength. 

Kharkov. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. I, pp. 
114-120, January-February, 1992. Original article submitted September 27, 1990. 
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i. In order to construct a connection between components of symmetrical tensors for 
creep strain rate @ and stresses a (second rank tensors) in anisotropic materials we use a 

potential 
2 F = o~. ( 1 . 1 )  

Then 

8 = %OF/Oo. ( 1 . 2 )  

Here o e is equivalent stress (%~0); ~ is a scalar multiple subject to determination; the 
dot means derivative with respect to time t; strains are assumed to be small. 

The equivalent stress, which establishes equivalence of uniaxial and complex stressed 
states, should be a uniform function of stress tensor invariants and certain constants. The 
physical state of the anisotropic material in question is described by the tensors of con- 
stantslb,(~)a, and (6)c of second, fourth, and sixth ranks, respectively. Then we form mixed 
invariants of stress tensors and constants: linear ~i ~ b .. ~ , quadratic o~ = o..(4)a..~ , and 
cubic a~ = ~..(a.-(6)c..o) (dots indicate summation with respect to indices repeated in tensors 
which take the values i, 2, and 3). Then we write an expression for equivalent stress 

% = % + ~a~ + ~%, ( 1 . 3 )  

where ~ and u are numerical coefficients which take account of the specific weight for dif- 
ferent uneven combined invariants in the representation for o e. 

Expression (1.3) is quite general and it includes a number of particular cases. For 
example, by placing ~ = 7 = 0 in (1.3) we obtain the relationship o e = a0 used for traditional 
anisotropoic materials [20, 27]. If we take g = i, 7 = 0 in (1.3) we arrive at an expression 
for equivalent stress o e = a 0 + a I suggested previously in [12]. 

Then by differentiating (1.2) using (i.I) and (1.3) we have 

e = 2%~e(O~0/a6 q- ~o~l/oo-+-?o~ja~. ( 1 . 4 )  

T a k i n g  a c c o u n t  o f  t h e  e q u a t i o n s  

we arrive from (i.4) at the equations 

e = 2~ff~[(a)a �9 .~/% + ~b + ? (~ . - (6 )c . .~a~) ] .  ( 1 . 5 )  

Then by  m u l t i p l y i n g  t h e  r i g h t -  and l e f t - h a n d  p a r t s  o f  ( 1 . 5 )  by  a and summing we o b t a i n  f o r  
s p e c i f i c  d i s s i p a t i n g  c a p a c i t y  W =  ~ . . 8  a r e l a t i o n s h i p  W = 2Xo~, i . e . ,  i n  r e l a t i o n s h i p s  
( 1 . 5 )  

2 ~  = W / ~ .  ( 1 . 6 )  

As a measure of intensity of the creep process we take the specific dissipating capacity 
W, and as a measure of material damage we take the specific dissipation energy ~ = ~Wdt. We 
assume that independent of the form of stressed state the amount of energy dissipated at the 
instant of failure with creep ~, = const. We take the following equation of state which 
connects at a fixed temperature processes of creep and failure: 

W ~ I ( ~ ,  ~). ( 1 . 7 )  

One of the forms of entry (1.7) for a disordered material may be 

(~, - -  ~ ) q  

(q is a constant). We note that for a strengthening material generalization of relationship 
(1.8) is possible in accordance with the suggestions in [20]. 

Thus, taking account of (1.6) and (1.8) we obtain from (1.5) tensor-linear physical 

relationships 

= x (~) ~ ,  - ~)~ [~.. ~% + ~b + v (o..(%" o/o~)l  ( 1 . 9 )  

and a k i n e t i c  e q u a t i o n  

~ld~ = ~ ( ~ )  ~ I ( ~ .  - -  ~)q. ( 1 . 1 0 )  
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Function X(Oe) = V(Oe)/O e in (1.9) is defined specifically on the basis of experimental 
reference data and it may be prescribed in the simplest form as a power relationship for 
o n , a hyperbolic sine rule sinh ((Te/d), and with known reservations as an exponential repre- 
sentation exp(oe/p) (n, p, d are constants). 

It is easy to establish that Eq. (1.9) stems from quite general relationships [27] 

= H + ( ~ ) M  �9 ~ +  (~)L �9 o) �9 o. 

I n  ou r  c a s e  t e n s o r  f u n c t i o n s  H, (~)M, and (6)L in  ( 1 . 1 1 )  a r e  found  a s  

H = T ~ b ,  (4)M = q~(a)a/%, (~)L = ~?(~)c/(7~, 
w h e r e  = , - -  ,)%]. 

2. We c o n s i d e r  some p a r t i c u l a r  f o r m s  f o r  e n t r i e s  i n  Eqs.  ( 1 . 9 )  and ( 1 . 1 0 ) .  F i r s t  i t  
is noted that as a result of symmetry for the stress tensor the tensors for the constants 
introduced are also symmetrical, ie.., they satisfy the conditions 

b i j  ~ b j i  , a i j h t  = a j i h l  = a i j ~ k  -~- a h l i ] ,  

~ i j h l r n n  ~ Cj ih l rnn  ~ C i j l s  = Ci jhlr~m ~ C h I i j m n  ~ C m n i j h  l ~ C i j rnnh  l ~ C m n h l i j  ~ C h l m n i j ' ,  

T a k i n g  a c c o u n t  o f  t h i s  i n v a r i a n t  o c o n t a i n s  s i x  i n d e p e n d e n t  c o n s t a n t s ,  o2l c o n t a i n s  21, and 
o23 c o n t a i n s  56. 

For  o r t h o t r o p i c  m a t e r i a l s  w i t h  c o i n c i d e n c e  o f  t h e  c o o r d i n a t e  a x e s  w i t h  t h e  p r i n c i p a l  
d i r e c t i o n s  o f  a n i s o t r o p y  r e l a t i o n s h i p s  ( 1 . 9 )  t a k e  t h e  fo rm 

~11 = ~ [(a1111(711 ~- ~1122(722 '-~ a1133(733)/(70 + ~Zbll -~ ~ (C111111011 -~ 
2 2 

-{- C112222022 -J7 Cl~aaaa(Ta3 + 2C~nl2~(711(122 + 2Cnnaa(7n%a + 2ClI2233(722(733 § 
(7 2 -~ ~Cl11212(722 -~ ~Cl123230223 -~ 4Cl11313(~123) / 2], (2 1) 

C , 2 

Here 

(1.11) 

2 2 2 2 / 2 . 
02 ~ a l l l l O l l  -~ a2222022 § a3333(733 A_ 2ai122(711(722 § 2a2233(Y22(r33 § 2a1133(711(733 _~ 4a1212012 _~ ~a2323(723 _~ ![a1313G13 ' 

3 3 3 2 2 
O 3 : Cl11111(711 -~ C222222(722 -~ C333333(733 -~ 3Cl11122(711(722 ~- 3Cl11133(711(733 -~ 

o 2 0 2 
§ 3C222211(7222(711 § 3C22223aO22q38 § 3C838311038(711 § oC333322(733(3r22 ~- 

2 0 § 6C1122a3(711(722(733 _~ 12C121211(722ffll 2ff ]2C121222(712 22 ~- 12C121233(7122(7a3 -~ 
2 2 2 2 

27 t2C232311(i23(~11 ~- ]2C232322(723(722 ~- 12C232333(123U33 -~ 12c~a1311(71a(7~l § 
2 

§ 12C1313220~3(722 § ~2C131338(713(73a § 48C1223t3(712(723(713; 

and the  r e s t  o f  the  p h y s i c a l  r e l a t i o n s h i p s  a re  o b t a i n e d  from (2 .1 )  by c i r c u l a r  t r a n s p o s i t i o n  
of indices i, 2, and 3. It is emphasized that for the orthotropic material in question ten- 
sor b includes three independent constants, (4)a includes nine, and (6)c includes twenty. 

In describing the creep of isotropic materials in Eqs. (2.1) it is necessary to place 

hi: ---- B6ij, aijhz ---- A61:6m + (C/2)(6ik6:z "6 8zi6jk), r = D6i:6hzSm~ + (K/6)(6i:6km6z. q- 6~j6j~,,6z.~ + 

"Jr 6iiO~n6jm + (~im6hjSZn -~ 6i~6~6~ + ~)inO~j6lm:-~ 6in6~m61j ) 

( S i j  i s  K r o n e c k e r  s y m b o l ) .  Then f u n d a m e n t a l  r e l a t i o n s h i p s  ( 2 . 1 )  a r e  w r i t t e n  o u t  as: 

= z  % V ( r  - + + + v + + + ( 2 . 2 )  

where  a s = B J , ;  02o = AJ~ + C~,2; a32 = DJ~ + K J ~ J  2 + EYa; J~ = ~ 6 ~ ;  J2 = a~ja~; J3 ~ ~l~J(7:~n~. Thus ,  
the equations suggested for isotropic creep use three invariants of the stress tensor (Jl, 
J~, J~) and six parameters (A, B, C, D, E, K) in expressions for (Te" 

We note that with practical application of physical relationships (2.1) and (2.2) re- 
lationships (1.3) and (i.i0) are also involved which retain the same form of entry as in the 
case of more general equations (1.9). 
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3. We discuss possibilities for the approach in question on the example of creep for 
isotropic materials described by Eqs. (2.2). The conclusions and recommendations obtained 
here may then be used in analyzing relationships (1.9). 

In order to determine the six parameters in (2.2) six test data are required. For this 
purpose we consider the following basic creep experiment up to failure in which a uniform 
stressed state is created in specimens of the test material: 

uniaxial tension (o11 ~ 0) establishing in the direction of the applied load the rela- 

tionship 
n q 

~ .  = K + o ~ , / ( ~ ,  - -  ~,)q (3. t) 
and in the transverse direction e22 =- Qon~./(~ , --~), 

uniaxial compression (oll ~ 0) with which 

El l  = - -  K _  10"111~ q)q/(q)~ - -  q?)q; ( 3 . 2 )  

pure torsion (o12 ~ 0) with a specific change in angular velocity 

2~12 = N o ~ 2 C , / ( ~ ,  - -  ~,)q (3.3) 
and axial e11 = 7]Jo~sCq,/(q0,-- ~)q strain; 

loading by hydrostatic pressure(a n = aa2= 63~ =- IJ11/3) which establishes the rule e11 = 

~2~ = e33 =--Pla111n~q*/(~P*--~)q; material constants K+, K_, Q, N, ~, P, n, q, ~, are assumed to 
be known. 

n in (2.2) and writing out for each of the stressed states con- Then by taking X(Oe) = ~ 
sidered above the corresponding equations which emerge from (2.2), we find after simple 
transformations the parameters in physical relationships: 

C = Nz~I2; a B  = M/(]/2-C) n, A = X ~ -- C, 

6 2 3 D = [ ] / r g - A 4 - 3 C - - 3 r  t S ( A / V A + C + a B 4 - Q K + n ~ ) ( T - - a B )  ~, ( 3 . 4 )  

273K = 3 (T - -  r ~ - -  [ V 9A + 3C - -  3 ~ B  - -  (3P)r] 3 - -  24 ( A / ~ / - ~  C + aB 4- QK+ nr) (T --  czB) 2, 

y3L ----- (T -- O~B) 3 -- ya D -- yaK. 

Here T=(K~+--Kr_)/2; X=(K~+K~_)/2; r=ll(n+l). Parameters in Eqs. (2.2) with other repre- 
sentations of X(Oe) are determined by a similar procedure. 

We obtain partial physical relationships which emerge from (2.2) and which contain a 
smaller number of parameters. As before we assume that X(Oe) = o n . If for example from the 
data of reference experiments the equality 

T = M N  -'~', V - g x  2 - -  3 N  ~" = 3T  + ( 3 P f ,  ( 3 . 5 )  

is established, then from (3.4) we have ~ = 0. Therefore o e = ~o I + o0, i.e., in this case 
the equivalent stress does not contain the third stress tensor invariant. Then creep Eqs. 
(2.2) are written out in the form 

�9 (AYa64i~-Caii ) 
~J = ~ (o~) C / ( q ) ,  - ~)~ ~ "-o + ~ J  ' (3.6) 

and relationships (3.5) are conditions for using tensor-linear relationships (3.6). In the 
case of fulfilling the equalities 

3 T  3 -  [ V 9 x  ~" - -  3 N  2~ - -  (3P)~] ~ ---- Y = M = 0,  ( 3 . 7 )  

where Y = X = N2r/(2X) + QK+ nr, on the basis of Eqs. (3.4) we arrive at the requirements 
~B = D = K = 0. Here relationships (2.2) degenerate into the equations 

"~ = z ( ~ )  C, / ( ,~ ,  _ q~)~ .( AJ~%Oo + c% +V~)-L~ (3.8) 
The physical relationships (3.8) obtained as before for (2.2) are tensor-linear and use all 
three invariants of the stressed state, although they contain a smaller number of parameters 
compared with the original Eqs. (2.2). The possibilities for using relationships (3.8) are 
specified by equalities (3.7). If the relationships 

[ V - g x "  - -  3 N  ~ - -  (3P) r ]  3 - -  9 T  ~ ~ T + 3 Y  -~ M = 0, ( 3 . 9 )  
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are established by test data, then from (3.4) it follows that aB = D = L = 0, and therefore 
Eqs. (2.2) take the form 

(3.10) 

Here the conditions (3.9) will be recommendations for using relationships (3.10). 

The three-parameter relationships (3.6), (3.8), and (3.10) considered are not the only 
equations which emerge from (2.2). For example, in fulfilling the equalities 

K+=K_, M=P=0, x2r =3K~ (3.11) 

there follow from Eqs. (3.4) equalities aB = y = 0, C = -3A. Here physical relationships 
(2.2) degenerate into known equations [19] 

for materials which are not sensitive to the form of loading. Thus, relationships (2.2) ex- 
hibit sufficient generality and they include as special cases a number of fundamental equa, 
tions. 

Now we turn to experimental creep and stress-rupture data [7] for titanium alloy OT-4 
with temperature T = 748 K. Unfortunately due to the lack in [7] of all of the results of 
the reference experiments formulated previously it is not possible to draw on Eqs. (2.2) and 
establish the validity of the particular procedural recommendations from (3.5), (3.7), (3.9). 
Therefore, we use the results of three tests (tension, compression, torsion) described by 
relationships (3.1)-(3.3). It was established in [7] that material constants are K+ = 13.3. 
10 -14 MPa-n'h -I, K_ = 7.5"i0 -14 MPa-n'h -l, N = 27.7.10 -13 MPa-n.h -i, n = 4, q = 2, ~, = I00 

MPa. By using these test data it is possible to determine parameters in physical relation- 
ships (3.6), (3.8), (3.10) taking X(Oe) = n U e �9 

We compare results calculated on the basis of relationships (3.6), (3.8), (3.10) with 
experimental data with a two-dimensional stressed state for the titanium alloy in question. 
Experiments were carried out [7] on thin-walled tubular specimens loaded by a tensile force 
and torsional moment. Presented in Figs. 1 and 2 is the change in specific energy dissi- 
pated~ with passage of time t in two experiments in tension with torsion: o11 = 194.9 MPa, 
o12 = 46.6 MPa and oll= 156.3 MPa, o12 = 52.1MPa, respectively [points are experimental 
data, lines 1-3 are the results of calculations relating to relationships (3.6), (3.8), 
(3.10)]. All of the calculations were carried out by integrating kinetic Eqs. (i.i0) by the 
Kutt-Merson method with automatic selection of the step. 

By considering the unique scatter of test data for creep and particularly marked in the 
third stage, the agreement of theoretical and experimental results may be considered satis- 
factory. Also noted is the similarity between calculated data obtained on the basis of 
physical relationships which describe in a different way the different resistance to tension 
and compression. In this situation it is correct to use, at least with a two-dimensional 
stressed state, simpler tensor-linear equations (3.6). A similar question for the three- 
dimensional stressed state remains open. However, it is an undoubted fact that nonfulfill- 
ment of even one of equalities (3.11) makes it impossible to use traditional creep equations 
which do not take account of the effect of the form of loading. 

The theoretical assumptions, the basic reference experiments formulated, and the pro- 
cedural recommendations developed in the present work may serve as a basis and direction for 
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future theoretical and experimental studies in the field of creep for isotropic and aniso- 
tropic materials with a different resistance to tension and compression. Other approaches 
formulated in modern creep and stress-rupture theory for the materials in question, e.g., 
the energy version [28], are in no way repudiated. 
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